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Abstract. We use an off-lattice microscopic model for solutions of equilibrium polymers (EP) in a lamellar
shear flow generated by means of a self-consistent external field between parallel hard walls. The individual
conformations of the chains are found to elongate in flow direction and shrink perpendicular to it while
the average polymer length decreases with increasing shear rate. The Molecular Weight Distribution of the
chain lengths retains largely its exponential form in dense solutions whereas in dilute solutions it changes
from a power-exponential Schwartz distribution to a purely exponential one upon an increase of the shear
rate. With growing shear rate the system becomes increasingly inhomogeneous so that a characteristic
variation of the total monomer density, the diffusion coefficient, and the center-of-mass distribution of
polymer chains of different contour length with the velocity of flow is observed. At higher temperature,
as the average chain length decreases significantly, the system is shown to undergo an order-disorder
transition into a state of nematic liquid crystalline order with an easy direction parallel to the hard walls.
The influence of shear flow on this state is briefly examined.

PACS. 83.50.Ax Steady shear flows – 82.35.+t Polymer reactions and polymerization – 61.25.Hq Macro-
molecular and polymer solutions; polymer melts; swelling – 64.60.Cn Order disorder transformations;
statistical mechanics of model systems

1 Introduction

Systems in which polymerization takes place under condi-
tion of chemical equilibrium between polymer chains and
their respective monomers are termed “equilibrium poly-
mers” (EP) [1]. The interest to EP from the point of view
of both applications and basic research has recently trig-
gered numerous investigation, including computer simula-
tions [4,5] in an effort to avoid difficulties with laboratory
experiments [6] and approximations as the Mean Field Ap-
proximation (MFA). Recently the basic scaling concepts
of polymer physics were tested by extensive Monte-Carlo
(MC) simulations of flexible EP on a lattice [4]. The results
suggest that despite polydispersity, EP resemble conven-
tional polymers (where the polymerization reaction has
been deliberately terminated) in many aspects. However,
dynamic aspects of their behavior may still be very dif-
ferent: for example, the constant process of scission and
recombination in EP offers an additional mechanism of
stress relaxation [7]. Computer experiments on EP dy-
namics are already under way [8].

Considerably fewer simulation studies of non-
equilibrium properties of EP have been reported [5,9].
Recently observed phenomena such as shear banding
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structure, shear inducing structure and phase transi-
tions [12–15] are not completely understood. An earlier
theoretical work [16], for instance, predicted a decrease
in average size of dilute rod-like micelles whereas a later
study [17] concluded that rod-like micelles should grow
at higher shear rates. Since it is known that viscoelastic
surfactant solutions show unusual nonlinear rheology [18],
it is clear that much more research in this field is needed
before complete understanding of rheological properties of
EP is achieved.

Since EP behave in many respects as conventional
“dead” polymers [4], comparisons with the latter where
much more work on shear flow effects has been done so
far, could prove very useful. Thus inhomogeneity of flows,
due to the presence of boundaries, and its impact on
polymer behavior may be directly observed experimen-
tally by means of evanescent wave-induced fluorescence
method [19] that can probe the polymer concentration
in the depletion layer adjacent to the walls. Coil stretch-
ing of dilute flexible polymers in a flow, diffusion and
density profiles as well as “slip” effects near walls have
been treated theoretically [20–23] and by computer simu-
lations [24–26], and as we shall demonstrate below, many
of these early results compare favorably with what we ob-
serve for EP in the present investigation.



242 The European Physical Journal B

In the present study we employ a dynamic Monte-
Carlo algorithm in order to study EP properties in shear
rate. The flow of the system in a semi-infinite slit of thick-
ness D is induced by applying an external field F with
magnitude which changes linearly across the slit and is
parallel to the hard walls of the container. Thus the jump
rate of the monomers becomes biased along the x-axis and
a flow of the system through the periodic boundary sets in.

One should emphasize that such an investigation
should focus on the linear response in a laminar shear
flow. MC methods cannot account for hydrodynamic in-
teractions in principle and the transition from laminar to
turbulent flow can be simulated by means of Molecular
Dynamics (MD) only. The linear response breaks down
at field intensities when the maximum flow velocity is at-
tained, i.e. when all 100% of the random jumps along the
x-axis are forced to occur, say, in positive direction. Any
further increase of the field F will then fail to acceler-
ate the particles any further. Even with these limitations,
however, it appears that this kind of MC simulation of EP
in a shear flow is warranted, given the considerably longer
time periods or systems sizes a MC methods may handle
as compared to MD.

All Monte-Carlo studies of EP so far have been per-
formed on a cubic lattice either exploiting an analogy of
the Potts model of magnetism to random self-avoiding
walks on a lattice [10,11], or using the Bond Fluctua-
tion (BFL) Model [4,9]. These lattice models were de-
veloped and extensively used for monodisperse systems
of conventional polymers and are known to faithfully re-
produce their dynamic (Rouse) behavior. For the purpose
of shear flow studies a disadvantage of these models, due
to the discrete structure of the lattice, appears obvious:
monomers would block each other on the lattice at higher
shear rates. Random jumps would have to be of the size of
single monomers only, and, last not least, the artificial cu-
bic symmetry would predetermine ordering effects along
the three major axes of the lattice [27] thereby questioning
possible phase transitions into liquid crystalline order.

In the present work we employ an off-lattice model
of EP, designed to overcome these and other shortcom-
ings of previous lattice models and to serve in examining
the role of polymers (semi)-flexibility. An off-lattice model
should be a better tool in dynamic studies of a broader
class of soft condensed matter systems where bifunctional-
ity of the chemical bonds might be extended to polyfunc-
tional bonds, as this is the case in gels and membranes. A
comprehensive comparison of this off-lattice algorithm to
earlier lattice models [8] shows that all properties of EP
derived in former investigations, are faithfully reproduced
in the continuum too.

2 Description of the model

As in our earlier off-lattice bead-spring model of conven-
tional polymer chain [28,29], a coarse-grained polymer
chain consists of l beads or “effective monomers”. These
are connected by springs which represent “effective bonds”

and are described by a FENE (finitely extendible non-
linear elastic) potential:

UFENE(r) = −k
2
R2 log

[
1−

(
r − r0
R

)2
]
− J, (1)

for −R < r − r0 < R,

UFENE(r) = ∞, otherwise

where r is the distance between two successive beads,
r0 = 0.7 is the unperturbed bond length with maximal
extension lmax, R = lmax− r0 = 0.3, and k/2 = 20 (in our
units of energy kBT = 1.0) is the elastic constant of the
FENE potential which behaves as a harmonic potential
for r − r0 � R. Thus UFENE(r ≈ r0) ≈ −k2 (r − r0)2 but
diverges logarithmically both for r→ lmax and r → lmin =
2r0−lmax. We choose our unit of length such that lmax = 1
and then the hard core diameter of the beads lmin = 0.4.
All lengths as, e.g. the linear size of the simulational box,
are then measured in units of lmax.

According to equation (1) the net gain of energy of
a monomer which forms a bond with a nearest neighbor
at distance r0 is then equal to the “bond” energy J . In
EP these strong attractive bonds between nearest neigh-
bors along the backbone of a chain are constantly sub-
ject to scission and recombination. In the present model
only bonds, stretched a distance r beyond some threshold
value, rbreak = 0.8lmax, attempt to break so that eventu-
ally an energy UFENE(r) > 0 in the interval between 0 and
J could be released if the bond is broken.

Each monomer has two unsaturated bonds which may
be either engaged in forming a strong saturated bond be-
tween nearest neighbors along the backbone of a chain
(when the originally unsaturated bonds of such neighbors
meet and become a parallel pair) or remain free (or “dan-
gling”) as in the case of chain ends or non-bonded single
monomers. In order to create a bond, however, the re-
spective monomers must approach 1 each other within the
same interval of distances rbreak ≤ r ≤ lmax where scis-
sions take place. While covalent bonds are thus constantly
broken or created during the simulation, we would like to
emphasize that no formation of ring polymers is allowed
and this condition has to be observed whenever an act of
polymerization takes place.

The non-bonded interaction between monomers is de-
scribed by a Morse potential,

UM(r) = exp [−2a (r − rmin)]− 2 exp [−a (r − rmin)] ,
for 0 < r − rmin <∞, (2)

where rmin = 0.8, and the large value of a = 24 makes
interactions vanish at distances larger than unity, so that
an efficient link-cell algorithm [28] for short-range inter-
actions can be implemented. In the present study we
maintain our system in the “good solvent” regime and,
therefore, only keep the repulsive branch of equation (2),
shifting it up the positive y-axis so that UM(r) = 0 for

1 Recombination for r < rbreak would violate detailed bal-
ance if scissions occur at r > rbreak only.
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Fig. 1. Definition sketch for external field variation, Fx(z),
causing flow in x-direction between infinite parallel plates.

r > rmin. The radii of the beads and the interactions,
equations (1, 2), have been chosen such that the chains
may not intersect themselves or each other in the course
of their movement within the box, so that “excluded-
volume” interactions as well as the topological connec-
tivity of the macromolecules are allowed for.

We introduce the shear rate B by defining an external
field F whose only component is directed along the x-axis
and changes linearly along the z-dimension of the box –
Figure 1:

Fx(z) = B(z − Zmax/2),
dFx(z)

dz
= B (3)

so that the bias changes sign at the middle of the box
Zmax/2.

A standard Metropolis algorithm governs monomer
displacements, whereby an attempted move of a randomly
selected particle in a random direction is taken from a uni-
form distribution within the interval − 1

2 ≤ ∆x,∆y,∆z ≤
1
2 . The presence of impenetrable walls at z = 0 and
z = Zmax is observed by rejection of all those jumps of
the monomers which would otherwise cause them to leave
the box through the planes at the bottom and the top.
Thus jumps are attempted with probability

Patt(∆x) =
{

1, for − 1
2 ≤ ∆x ≤

1
2

0, otherwise (4)

and accepted with probability, equal to

Pacc(∆x) = exp[−(Enew +∆W −Eold)/kBT ],
for Enew +∆W > Eold,

Pacc(∆x) = 1 otherwise, (5)

where Enew and Eold are the energies of the new and old
system configurations, and ∆W is the work, performed by
the field when a monomer jumps from position rold to a

new position, rnew:

∆W =
∫ rnew

rold

Fdr =
∫ ∆x

0

F (z(x))dx. (6)

Since the potential of the field F, equation (3), is not
scalar,∆W depends on the path followed by the monomer
during a jump rold → rnew. During a jump this path z(x)
is a straight line, z(x) = ∆z

∆xx + zold, so that from equa-
tion (3) one obtains for the work

∆W =
∫ ∆x

0

Fxdx = B
znew + zold

2
∆x = F̄∆x, (7)

where F̄ denotes the average from the values of the field in
positions rold and rnew. With F̄ , as defined in equation (7),
one satisfies the condition of microscopic reversibility with
respect to the movements of the particles. Note that it
is the microscopic reversibility which requires the use of
F̄ , rather than Fold, for instance, in the determination
of ∆W . This becomes immediately obvious by consider-
ing the displacement of a single non-interacting particle
in the external field: for a self-consistent algorithm, the
update rules for the forward and reverse moves have to be
identical (time reversible).

The field, F, is thus introduced in the system as an
additional term in the Boltzmann probability in equa-
tion (5) whereby the probability for jumps along or against
the field becomes then strongly biased. This term makes
the energy in the Boltzmann factor in equation (5) a
monotonously decreasing function of x. The Metropolis
algorithm tends to find the minimum of this energy thus
continuously driving the system to an unreached mini-
mum which gives a continuous flow in x direction. One
can readily estimate the average jump distance, δx, if ∆W
is assumed to be larger than the microscopic interactions
UFENE and UM. Setting Enew ≈ Eold = 0 for simplicity in
equation (5), with F̄ ≈ F one has

δx =
∫
xPacc(x)dx∫
Pacc(x)dx

=

∫ 1
2

0 x exp(−Fx)dx+
∫ 0

− 1
2
xdx∫ 1

2
0

exp(−Fx)dx+
∫ 0

− 1
2

dx

=
− 1

8 + [1− (1 + F
2 ) exp(−F2 )]/F 2

1
2 + [1− exp(−F2 )]/F

(8)

which yields δx = 0 for F = 0 and δx ≈ − 1
4 for sufficiently

strong fields F , (the sign of δx depending on which half
of the box is considered). Thus δx remains bound from
above, no matter how strong the applied bias is chosen2.

In order to provide for the reversibility of scission and
recombination events, a Monte-Carlo time step (MCS)
has been performed after N particles of the system
are randomly chosen and attempted to move at ran-
dom whereby existing bonds are kept as they are. After
that N monomers are again picked at random, i.e. one

2 Of course, since the microscopic interactions are always
present, this result remains a rough estimate only whose valid-
ity can be checked by the simulation.
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of the two bonds of each is randomly chosen and, depend-
ing on whether this bond exists and points to an existing
neighbor along the same chain, or it doesn’t, the bond is
attempted to break or to create.

Thus, within an elementary time step (MCS) N
random jumps and as many attempts of bond scis-
sion/recombination are carried out, each subject to the
Boltzmann probability that the respective attempt is suc-
cessful. It is clear that in a system of EP where scission
and recombination of bonds are constantly taking place
the particular scheme of bookkeeping is no trivial matter.
Since the identity of a particular chain, or monomer affili-
ation, is in principle preserved for no more than one MCS,
the data structure of the chains can only be based on the
individual monomers (or, rather, links) as suggested re-
cently [4]. Thus each monomer has two links. The links
associated with a given monomer are pointers which may
either point to another link or to “nowhere”. In the latter
case a link then represents an unsaturated dangling bond.
Thus a large number of particles may be simulated at very
modest operational memory. Results in the present study
involve systems of up to N = 65536. The simulational
box (slit) sizes are typically 16 × 16 ×D where D is the
width of the slit in z-dimension. The total density of the
monomers c is then defined as the number of monomers
per unit volume.

During the simulation the whole system is periodically
examined, the number of chains with chain length l, square
end-to-end distance, R2

e , gyration radius, R2
g, center-of-

mass coordinates, displacements, etc., are counted and
stored. Because of the semi-periodic (in x- and y-direction)
boundary conditions the interactions between monomers
follow the minimum image convention. The computation
of the conformational properties of the chains asR2

e , for in-
stance, then implies a restoration of the absolute monomer
coordinates from the periodic ones for each repeating unit
of the chain.

Technical details of this new algorithm will be pre-
sented elsewhere, here we will note only that the high ef-
ficiency in code performance is achieved by extensive im-
plementation of integer arithmetic in this off-lattice model
based largely on binary operations with variables. Thus,
for example, the most heavily involved (modulo) oper-
ations which provide periodicity of coordinates and the
minimum image computation for distances turn out to be
redundant.

3 Simulational results

3.1 Velocity profiles

As mentioned in Section 2, we create a shear flow in our
system by applying an external field with constant gra-
dient along the z-axis of the box so that the flow is ori-
ented along the x-direction – cf. equation (5), parallel to
the hard walls at z = 0 and z = D. The lower half of
the box would then flow in positive, the upper one – in
negative x-direction. It is expected that in the immediate
vicinity of the walls the flow might be somewhat distorted

due to walls impenetrability. Below, in Figure 2a we plot
the mean jump distance per MCS, δx, measured along
the x-axis for different values of B. The z-coordinates of
these successful jumps are taken from the respective z-
coordinate of the monomers.

Evidently, in a wide channel with D = 32 only for
sufficiently weak field B ≤ 0.3 the average jump distance
grows linearly with respect to the half-width of the box
(for B = 0 it is zero). For B > 0.3 distortions in the δx
profile set in because the maximal jump distance is limited
to 0.5, as mentioned in Section 2. For a more narrow slit
of width D = 16 the region of linear response would then
extend to higher values of F ≤ 0.7. Therefore most of
the simulational results in what follows are derived for
D = 16. Figure 2b then demonstrates that the velocity
changes linearly across the slit for sufficiently small values
of the field B.

In the broad channel, D = 32, at z = 0, D for B = 0.5
one gets F = 8 from equation (3) so that the average jump
distance there according to equation (8) should be δx ≈
± 0.178. The value of δx at the borders of the box, as seen
from Figure 2a, confirms this estimate demonstrating that
the role of the microscopic interactions UM and UFENE is
small.

The presence of the walls is felt in their immediate
vicinity and some local distortion of the displacement pro-
file appears increasingly pronounced with growing B al-
though it remains spatially contained in a layer of thick-
ness roughly equal to monomers diameter. It is interesting
to note that this small increase of δx (and, therefore, of
velocity) immediately at the walls resembles the so called
“slip effect” [23,24] in simple shear flow of dilute polymer
solutions in a narrow channel. This slip effect can be ex-
plained intuitively by the fact that the polymer molecules
near the wall align themselves more strongly with the flow
than those away from the wall, and are thus transport-
ing less flow-wise momentum across the flow than would
otherwise be the case. Indeed, in our Monte-Carlo model
the attempted jumps which would otherwise bring the
monomers through and beyond the walls of the slit are
always rejected. Since the molecules cannot penetrate the
wall, their concentration is reduced at the wall, so that
their contribution to the viscosity is further diminished.
Using a model of dumbbells in parallel wall shear flow,
one can calculate [21,23,24] both the nonlinear velocity
profile of the suspended solutions as well as the center
of mass concentration profile between the two walls – we
shall see in the next section that the latter is qualitatively
reproduced by our simulational results.

3.2 Effect of shear rate on average chain length
and molecular weight distribution

We find that the average chain length of the EP solu-
tion, L, decreases steadily with growing B, which is in
agreement with an earlier MD study [5] – Figure 3: the
mean chain length L at this highest shear rate is about
70% of its value for a system at rest. Here we should like
to point out the existence of considerable fluctuations in
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Fig. 2. (a) Variation of the average distance of accepted jumps in x-direction vs. z coordinate with the external field amplitude B
in a box of size Zmax = 32. (b) Variation of the average velocity (distance in x-direction traveled by a monomer after 1024 MCS)
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Fig. 3. Relative decrease of mean chain length L in lamellar
flow field versus B at J/kT = 7, densities c = 1.0 and c = 2.0
and D = 16.

the derived values of L for F 6= 0 – the statistical error
has been reduced at the expense of considerable compu-
tational effort. Note that the reduced L/L0 mean chain
length dependence on shear rate B (L0 is the mean chain
length of the solution atB = 0) appears to decrease nearly
linearly with B: L/L0 = 1 − 0.35B which simply follows
(cf. Eq. (10) below) from the exponential dependence of L
on interaction J : L/L0 = exp[−(J−bB)/2]/ exp(−J/2) =
exp(bB/2) ≈ 1− bB/2 with the constant b = 0.7 measur-
ing the effective decrease of bond energy J due to shear
B. Another interesting observation is that the rate of de-
cline is apparently independent of density c, at least for
the small values of F considered in the present work.

The form for the MWD C(l), that is, the concentra-
tions of chains of contour length l, appears to change qual-
itatively for equilibrium polymers in dilute solutions. This
change is in line with the predictions of the recent scaling

theory of EP [4] where we demonstrated that the purely
exponential form of the MWD, P (x) ∝ exp(x), corre-
sponding to concentration/chain length regimes in which
density correlations are suppressed (typically beyond
the semi-dilute threshold), is replaced by a “rounded”
Schwartz power-exponential distribution:

P (x)dx =

 exp(−x)dx (L� L∗)
γγ

Γ (γ)
xγ−1 exp(−γx)dx (L� L∗) (9)

when correlations are important (typically dilute con-
centrations). In equation (9) the reduced chain length,
x = l/L, is taken as ratio of the particular chain length l
to the mean chain length L, γ is the critical exponent of
the n→ 0 vector model, (in 3D γ ≈ 1.165 while its mean
field value is γMFA = 1), and L∗ marks the average chain
length at the crossover from dilute to semi-dilute concen-
tration, (c→ c∗), of EP solutions. The mean chain length
L was predicted and confirmed to vary with dimensionless
bond energy J/kBT as

L ∝ cα exp(δJ/kBT ) (10)

with exponents αd = δd = 1/(1 + γ) ≈ 0.46 in the di-
lute and αs = 1/2(1 + (γ − 1)/(νd − 1) ≈ 0.6, δd = 1/2
in the semi-dilute regime. In Figure 4 we plot C(l) for a
system at rest (c = 0.5, B = 0) and at maximum shear
rate (B = 0.7) to demonstrate that the form of MWD
changes qualitatively when shear is imposed. Thus it is
evident from Figure 4 that in the presence of shear the
correlations in polymer concentration in our dilute sys-
tem of EP are effectively suppressed and the Molecular
Weight Distribution is very well reproduced by the simple
exponential function expected if a MFA description of the
system holds. This finding can be understood if one recalls
that the imposition of an external field with a shear rate
B has a twofold effect on the polymers: (i) it effectively
reduces the bond strength, J → J − bB, which makes
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the polymers shorter, and (ii) the shape of the polymer
coils is changed towards more rod-like shape with the
longest axis oriented along the field. Meanwhile it is well
known that a system of rods exhibits a Mean-Field-like
behavior [2] which is here manifested by the change in the
MWD – Figure 4.

3.3 Effect of shear rate on chain conformations

As the flow becomes faster, the individual shape of the
chain coils change too. For weak shear rates B, the rel-
ative distortions (as measured for instance by flow bire-
fringence [30]) are essentially proportional to τB where
τ is the largest relaxation time of the unperturbed
molecule [31]. Brownian dynamics studies [25] for Hookean
dumbbells in a steady shear flow confirm this relative in-
crease of the end-to-end distance with the shear rate both
with and without hydrodynamic interactions included. A
confirmation of these early predictions follows from our
simulational results too – Figure 5.

In Figure 5 we plot the difference in gyration radii,
typical for a large section of the length distribution and
averaged over all EP, in two characteristic cases – sys-
tem at rest and in a flow, indicating that chain coils in
a flow become more extended along the field and com-
pressed parallel to it. The result is a total increase of R2

g

as the whole system starts drifting along field’s direction.
It is also evident from Figure 5 that this asymmetry in
the components of R2

g becomes progressively more pro-
nounced as l gets larger. The fact that R2

gz is somewhat
smaller than R2

gx even at rest is due to the presence of
hard walls at z = 0, Zmax which slightly deforms the coils
in z-direction. We have not given here a plot of the z-
dependence of R2

g because of the surface segregation of
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ordinates. Here J/kT = 7 and the density c = 0.5 in a narrow
slit D = 16. The average coil size measured at zero shear rate
is R2

e = 50.03 and R2
g = 8.325.

chain lengths, induced by the parallel plates. This seg-
regation populates the vicinity of the walls with single
monomers and very short species. In contrast, the longer
chains reside at least a distance Rg always from the walls
(see next section). Such a distribution of centers of mass
with respect to chain length takes place in EP even at rest
(and is further enhanced by the flow) making the MWD
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a z-dependent quantity and thus interfering with the pure
effect of coil stretching under flow.

3.4 Density profiles

The overall transformations which the system undergoes
with increasing shear rate, however, become much more
explicit if density and diffusion profiles are sampled as
function of z. This is shown in Figure 6 where the density
is normalized to unity (

∫D
0
c(z)dz = 1). It is evident from

Figure 6a that in the absence of bias when the system is
at rest the total monomer density is uniformly distributed
across the box with a typical depletion immediately at the
walls (at low concentration of the solution). The walls are
avoided by the longer chains because of entropic reasons.
When the system starts to flow a redistribution of den-
sity sets in with increasing bias B whereby for the highest
shear rate one observes a density maximum centered at
the middle where the flow velocity is nearly zero. Qualita-
tively this density profile appears to be similar to analytic
and simulational results [24] for the center of mass con-
centration profile between upper and lower walls, obtained
earlier for a single dumbbell in a slit3.

As the concentration is further increased, one ob-
serves the onset of typical oscillations in density profiles
in the vicinity of the walls, Figures 6b and 6c. Such os-
cillations are typical for polymer solutions confined be-
tween flat plates and have been comprehensively stud-
ied for conventional polymers by Monte-Carlo simulations
before [32,33]. The observed transitions in the monomer
density immediately at the walls from a deficit (depletion
layer) at low concentration up to an excess (for melts) are
governed by a competition between entropic and packing
effects. Because of the resultant decrease of configurational
entropy it becomes unfavorable for polymers to be near
the walls. Chains near the walls, on the other hand, suffer
collisions with the chains away from the walls, and tend to
move closer to the walls. At low density the entropic effect
dominates, while at high densities packing effects prevail.
This is clearly seen in Figures 6a, 6b and 6c for zero shear.
In dilute solutions, as seen from Figure 6a, the increase of
shear rate leads to effective broadening of the depletion
layers, adjacent to the walls, which is in agreement with
EWIF (evanescent wave-induced fluorescence) experimen-
tal observations [34] of GM, but at variance with an earlier
computer simulation [26].

This density variation across the slit, caused by the
shear rate, appears to depend essentially on the over-
all concentration of the system. At larger shear a den-
sity maximum still forms for the slowest layer of flow in
the box middle at concentration c = 1.0 whereas for very
dense systems, Figure 6c, this density redistribution with
shear is suppressed. One may thus conclude that effects
of shear on the density profiles in a slit depend essentially
on the free volume in the system which is available for
rearrangement of the polymer chains. In the broader slit,

3 In the much simpler model [24], however, the density profile
is independent of the shear rate B.

Figure 6d, where the shear rate gradually diminishes in
the vicinity of the wall (adjacent layers flow with nearly
equal velocity), the density profile gets more complex with
two local minima and a sharp increase at the walls. This
complex picture indicates that monomer density is gener-
ally increased in locations of zero flow or steady flow with
vanishing shear.

Clearly, the changes in these profiles with B when
shear sets on reflect some complex reorganization in the
polydisperse system of EP whereby the “rapids” of the
flow may act differently on chains of different length.

Additionally, even at rest, the system segregates in the
vicinity of the walls for entropic reasons [11] into layers
occupied predominantly by chains of decreasing contour
length as one gets closer to the wall. These effects are in-
deed seen in Figure 7, where the average positions of the
centers of mass of single monomers and of chains of length
l = 70 are shown at various strengths of the bias field.
The single monomers evidently tend to occupy the imme-
diate vicinity of the walls and this tendency is enhanced
as the shear increases. The long chains, on the contrary,
keep at distance ≈ Rg from the walls while the system
is at rest. For growing B their residence is further nar-
rowed around the “slow” region in the center of the box.
In view of Figure 6a one may conclude that the deficit of
single monomers from this region is more than compen-
sated by accumulation of longer chains. In the wide slit
(D = 32), only a fraction of the long chains still remains
in the middle whereas two new maxima at the walls ap-
pear. Evidently, this happens in those regions where the
shear rate for B > 0.4 (cf. Fig. 2) nearly vanishes.

One might expect that other properties of the system,
related to density, will also be affected by the shear, as
for instance, the local diffusion coefficient. In Figure 8 we
plot a histogram of mean square displacements (MSQD),
performed by all those particles which remain in the same
z-layer within a MCS.

The distribution of MSQD, Figure 8, develops from
being nearly constant (with two small wings at the deple-
tion zones) for zero bias to a well defined broad minimum
in the middle of the box as B → 0.7 whereby as a whole it
also decreases. Evidently, the diffusion profile across the
channel reflects simply the variations of the density dis-
tribution.

3.5 Nematic ordering of short chains

Most of the simulational results, discussed in the preced-
ing subsections, have been carried out for a sufficiently
strong energy bond, J/kT = 7, which is equivalent to a
rather low temperature of the system. The average chain
length at J/kT = 7 thereby varies with density within the
interval 40 ≤ L ≤ 70 where the flexibility of the chains en-
sures that their conformations correspond to well shaped
polymer coils. It is interesting to check whether a change
in the mean size of the chains L in some way affects the re-
organization of the polydisperse system under shear flow.
If one reduces the ratio of bond to thermal energy J/kBT ,
as mentioned in the previous section, equation (10),
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Fig. 6. Distribution of total monomer density between the hard walls in a slit of width Zmax = 16 at varying shear rate (bias)
and J/kT = 7: (a) c = 0.5; (b) c = 1.0; (c) c = 2.0; (d) a broad slit with Zmax = 32 and c = 0.5.
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Fig. 7. (a) Center of mass distribution of single monomers in a slit with D = 16, J/kT = 7 and c = 0.5 at various values of
the shear rate (bias). (b) Center of mass distribution of chains with l = 70 under the same conditions as in (a).
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c = 0.5; (b) for c = 1.0.
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Fig. 9. (a) Distribution of the total monomer density across a slit with D = 16 at various rates of shear (bias). (b) Average
mean square displacement after 1 MCS. (c) Center-of-mass distribution of chains with l = 1, 2, 3, 4, 5, 10 and 20 for B = 0. Each
curve is shifted from the previous one along the y-axis at 0.0005 for better visibility. (d) The same as in (c) but for B = 0.7.
The width of the slit is Zmax = 16, c = 0.5 and J/kT = 1.
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the average contour chain length decreases exponentially
fast. In the present study we change J/kT from 7 down
to 1 whereby L drops from ≈ 40 to 2.5. As shown below
this leads to dramatic changes in the EP solution. The
profiles along the z axis for this case of very short chains
are shown in Figure 9.

The oscillations in the the total density, Figure 9, sug-
gest a transition of the system into an ordered state of
nematic liquid crystal with an easy direction parallel to
the walls. Evidently the presence of hard walls acts as an
external ordering field on the chains. The system is dom-
inated by monomers, dimers and other very short species
which behave largely like stiff rods aligning themselves
parallel to the walls. Indeed, Figures 9c and 9d demon-
strate that this ordering is most pronounced for dimers,
trimers and tetramers whereas neither single monomers
nor chains with length l ≥ 5 participate in the ordering.
Thus both single monomers, which lack any anisotropy in
shape, and longer chains with conformations of coils rather
than stiff rods are insensitive to the ordering influence of
the walls.

The influence of growing shear rate on the system with
L = 2.5 is similar to that in the case of L ≈ 40 too. From
Figures 9c and 9d one may conclude that the longer chains,
which are otherwise uniformly distributed, now pull closer
to the middle of the slit where the flow velocity is zero.
This tendency starts with the 4- and 5-mers already and
is very clearly seen for the 10-mers (there are only few
20-mers in the system at J/kBT = 1 and their statistics
is therefore rather poor). This effect more than compen-
sates the developing shallow minimum in single monomer
concentration in the middle of the box.

4 Concluding remarks

The present simulational study of the impact of shear flow
on EP in a slab reveals a number of interesting features:

– The average chain length in a system of EP decreases
steadily with growing shear rate.

– The polymer coil is gradually stretched along the flow
direction as the shear is increased.

– The MWD in a dilute solution of EP changes quali-
tatively when sufficiently strong shear rate is imposed
from Schwartz- to a mean-field like exponential distri-
bution function.

– The shear rate introduces inhomogeneity in the sys-
tem of EP, confined in a slit: the monomer density, the
diffusion coefficient and the concentration of macro-
molecules with different lengths develop characteristic
profiles perpendicular to the walls.

– The width of the depletion layer near the wall for long
chains grows with increasing shear rate in agreement
with recent EWIF studies.

Another interesting phenomenon – an ordering transition
in a system dominated by the shorter and stiffer chains is
found to take place upon heating of the system of EP with
the result that chain length is reduced. In this case shear

flow is observed to enhance the degree of ordering in the
system.

Our observations show that the relaxation of a sys-
tem of EP from a state of rest to that of steady state
flow is a slow process which requires long time intervals
of investigation, probably rendering Monte-Carlo simula-
tional methods probably more appropriate than Molecular
Dynamics.

We should like to note, however, that the shear rates
studied in the present work are limited to low and mod-
erate values since stochastic jumps along and against the
external field may be biased by means of the Boltzmann
factor in a MC procedure within the framework of 100% at
most. We therefore expect that at still higher shear rates
the influence of flow on EP properties might be more dra-
matic. Clearly, additional work and adequate alternative
methods are still needed to reach comprehensive under-
standing of the problem.
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